Step: 1
In ΔXAB,
∠ABC =
∠BXA +
∠BAX
[In a triangle, an exterior angle is equal to the sum of the opposite interior angles.]
Step: 2
In ΔXAB, AB = BX
⇒ ∠BXA =
∠BAX
[Isosceles triangle theorem.]
Step: 3
m∠ABC = 2(
m∠BAX)
[Step 1 and Step 2.]
Step: 4
m∠BAX =
12(
m∠ABC)
[Rearrange.]
Step: 5
m∠BAX =
12(63)
[Substitute.]
Step: 6
Step: 7
Similarly, in ΔACY, m∠CAY = 12(m∠ACB)
Step: 8
m∠CAY =
12(63)
[Substitute.]
Step: 9
Step: 10
In ΔABC,
m∠BAC = 180 - (
m∠ABC +
m∠ACB)
[Triangle-Angle-Sum theorem.]
Step: 11
m∠BAC = 180 - (63 + 63)
[Substitute.]
Step: 12
Step: 13
m∠XAY =
m∠XAB +
m∠BAC +
m∠CAY
[Angle addition postulate.]
Step: 14
Here a = 63, b = 63, e = 54, c = 31.5 and d = 31.5.
Step: 15
m∠XAY = 31.5 + 54 + 31.5
[Substitute.]
Step: 16
m∠XAY = 117