Step: 1
Let a, b, c be the length of the sides and m1, m2, m3 be the length of the medians.
Step: 2
[Produce AD to E such that AD = DE and join C to E.]
Step: 3
ΔBDA
≅ ΔCDE
[SAS postulate.]
Step: 4
Step: 5
In ΔAEC, AC + CE > AE
[Triangle Inequality Theorem.]
Step: 6
b +
c > 2
m1 [Substitute.]
Step: 7
Similarly, for other medians, we get c + a > 2m2 and a + b > 2m3
Step: 8
(
b +
c) + (
c +
a) + (
a +
b) > 2
m1 + 2
m2 + 2
m3 [Add the three inequalities.]
Step: 9
2(
a +
b +
c) > 2(
m1 +
m2 +
m3)
[Add.]
Step: 10
(
a +
b +
c) >
m1 +
m2 +
m3 [Simplify.]
Step: 11
p > r
Correct Answer is : p > r