Processing math: 100%

Solved Examples and Worksheet for Solving Systems of Equations using Substitution Method

Q1Which of the following ordered pairs satisfies the linear system?
x - y = 6     
4x + 9y = -28

A. 2,4
B. 2,4
C. 2,4
D. 2,4

Step: 1
y = x - 6
  [Rearrange Equation 1.]
Step: 2
4x + 9(x - 6) = -28
  [Substitute y = (x - 6) in equation 2.]
Step: 3
13x - 54 = -28
  [Combine like terms.]
Step: 4
13x = 26
  [Add 54 to both sides.]
Step: 5
x = 2
  [Divide each side by 13.]
Step: 6
y = x - 6 = 2 - 6
  [Substitute x = 2 in the revised equation 1.]
Step: 7
y = -4
  [Simplify.]
Step: 8
The solution for the linear system is 2,4.
Correct Answer is :   2,4
Q2Which of the following ordered pairs satisfies the linear system?
2x - y = 0     
x - 4y = 0     

A. 0,0
B. 2,4
C. 2,4
D. 2,4

Step: 1
y = 2x
  [Rearrange Equation 1.]
Step: 2
x - 4(2x) = 0
  [Substitute y = 2x in Equation 2.]
Step: 3
- 7x = 0
  [Combine like terms.]
Step: 4
x = 0
  [Divide each side by - 7.]
Step: 5
y = 2x = 20
  [Substitute x = 0 in revised Equation 1.]
Step: 6
y = 0
  [Simplify.]
Step: 7
The solution for the linear system is 0,0.
Correct Answer is :   0,0
Q3Which of the following ordered pairs satisfies the linear system?
5x - 3y = -3
- x + 3y = -21

A. 6,9
B. 6,6
C. 28,52
D. 6,5

Step: 1
- x + 3y = -21
  [Original equation 2.]
Step: 2
x = 21 + 3y
  [Revise equation 2.]
Step: 3
5(21 + 3y) - 3y = -3
  [Replace x with 21 + 3y in Equation 1.]
Step: 4
12y + 105 = -3
  [Combine like terms.]
Step: 5
12y = -108
  [Subtract 105 from each side.]
Step: 6
y = - 9
  [Divide each side by 12.]
Step: 7
x = 21 + 3y = 21 + 39
  [Replace y with - 9 in the revised Equation 2.]
Step: 8
x = - 6
  [Simplify.]
Step: 9
The solution for the linear system is 6,9.
Correct Answer is :   6,9
Q4Which of the following ordered pairs satisfies the linear system?
- x + y = 8      
6x - 5y = -31  

A. 9,17
B. 9,17
C. 9,17
D. 9,17

Step: 1
y = x + 8
  [Rearrange Equation 1.]
Step: 2
6x - 5(x + 8) = -31
  [Replace y with x + 8 in Equation 2.]
Step: 3
x - 40 = -31
  [Combine like terms.]
Step: 4
x = 9
  [Add 40 to both sides.]
Step: 5
y = 9 + 8
  [Substitute x = 9 in the revised Equation 1.]
Step: 6
y = 17
  [Simplify.]
Step: 7
The solution for the linear system is 9,17.
Correct Answer is :   9,17
Q5Find the solution of the system of linear equations.
5x + 3y = 21  
x - 3y = 3

A. (4, 13)
B. (4, - 13)
C. (- 4, - 13)
D. (- 4, 13)

Step: 1
5x + 3y = 21
  [Equation 1.]
Step: 2
x - 3y = 3
  [Equation 2.]
Step: 3
x = 3y + 3
  [Revised Equation 2.]
Step: 4
5(3y + 3) + 3y = 21
  [Substitute x = 3y + 3 in Equation 1.]
Step: 5
18y + 15 = 21
  [Combine like terms.]
Step: 6
18y = 6
  [Subtract 15 from each side.]
Step: 7
y = 13
  [Divide each side by 18.]
Step: 8
x = 3y + 3 = 3(13) + 3
  [Replace y with 13 in the revised Equation 2.]
Step: 9
x = 4
  [Simplify.]
Step: 10
The solution for the linear system is (4, 13).
Correct Answer is :   (4, 13)
Q6Which of the following ordered pairs satisfies the linear system?
4x + 3y = 17    
- x + 3y = 7     

A. 2,3
B. 2,3
C. 2,3
D. 2,3

Step: 1
4x + 3y = 17 .....1
- x + 3y = 7 .....2
Step: 2
Equation 2 can be rearranged as x = 3y - 7 so that x in equation 1 can be replaced with this in order to solve the linear system.
Step: 3
4(3y - 7) + 3y = 17
  [Replace x with 3y - 7 in Equation 1.]
Step: 4
15y - 28 = 17
  [Combine like terms.]
Step: 5
15y = 45
  [Add 28 to both sides.]
Step: 6
y = 3
  [Divide each side by 15.]
Step: 7
x = 3y - 7 = 33 - 7
  [Replace y with 3 in the revised Equation 2.]
Step: 8
x = 2
  [Simplify.]
Step: 9
The solution for the linear system is 2,3.
Correct Answer is :   2,3
Q7Which of the following ordered pairs satisfies the linear system?
- 16x + 3y = -97
      x - y = 2

A. 7,5
B. 7,5
C. 7,5
D. 7,5

Step: 1
- 16x + 3y = -97 - - - - - - - - 1
Step: 2
x - y = 2 - - - - - - - - 2
Step: 3
x = y + 2
  [Rearrange Equation 2.]
Step: 4
- 16(y + 2) + 3y = -97
  [Substitute y + 2 for x in Equation 1.]
Step: 5
- 13y - 32 = -97
  [Combine like terms.]
Step: 6
- 13y = -65
  [Add 32 to both sides.]
Step: 7
y = 5
  [Divide each side by - 13.]
Step: 8
x = y + 2 = 5 + 2
  [Replace y with 5 in the revised Equation 2.]
Step: 9
x = 7
  [Simplify.]
Step: 10
So, the solution for the linear system is 7,5.
Correct Answer is :   7,5
Q8Solve the system by substitution:
6x - 3y = 15
- 4x + 2y = - 10

A. No solution
B. 3,0
C. Infinite solutions
D. 2,5

Step: 1
6x - 3y = 15
  [First equation.]
Step: 2
- 3y = 15 - 6x
  [Subtract 6x from the two sides of the equation.]
Step: 3
y = - 5 + 2x
  [Divide through out by - 3 from each side.]
Step: 4
- 4x + 2y = - 10
  [Second equation.]
Step: 5
- 4x + 2(- 5 + 2x) = - 10
  [Substitute the values.]
Step: 6
- 4x - 10 + 4x = - 10
Step: 7
- 10 = - 10
Step: 8
The above equation is always true, the number of solutions is infinite.
Correct Answer is :   Infinite solutions
Q9Solve the system by substitution:
2x + 12y = 10
6x = - 36y + 36

A. 36,0
B. 6,6
C. Infinite solution
D. No solution

Step: 1
6x = - 36y + 36
  [Second equation.]
Step: 2
x = - 6y + 6
  [Divide throughout by 6 .]
Step: 3
2x + 12y = 10
  [First equation.]
Step: 4
2(- 6y + 6) + 12y = 10
  [Substitute the values.]
Step: 5
- 12y + 12 + 12y = 10
Step: 6
12 = 10
  [Contradiction.]
Step: 7
So, there is no solution, the system is inconsistent.
Correct Answer is :   No solution
Q10Which of the following ordered pairs satisfies the linear system?
x - y = 6     [Equation 1]
6x + 7y = -29 [Equation 2]

A. 1,5
B. 1,5
C. 1,5
D. 1,5

Step: 1
y = x - 6
  [Rearrange Equation 1.]
Step: 2
6x + 7(x - 6) = -29
  [Substitute the values.]
Step: 3
13x - 42 = -29
  [Group the like terms.]
Step: 4
13x = 13
  [Add 42 to both sides of the equation.]
Step: 5
x = 1
  [Divide throughout by 13.]
Step: 6
y = x - 6 = 1 - 6
  [Substitute the values.]
Step: 7
y = - 5
  [Simplify.]
Step: 8
The solution for the linear system is 1,5.
Correct Answer is :   1,5
Q11Which of the following ordered pairs satisfies the linear system?
5x - y = 0      [Equation 1]
x - 3y = 0      [Equation 2]

A. 0,0
B. 5,3
C. 5,3
D. 5,3

Step: 1
y = 5x
  [Rearrange Equation 1.]
Step: 2
x - 3(5x) = 0
  [Substitute the values.]
Step: 3
-14x = 0
  [Group the like terms.]
Step: 4
x = 0
  [Divide throughout by -14.]
Step: 5
y = 5x = 50
  [Substitute the values.]
Step: 6
y = 0
  [Simplify.]
Step: 7
The solution for the linear system is 0,0.
Correct Answer is :   0,0
Q12Which of the following ordered pairs satisfies the linear system?
4x - 8y = 8   [Equation 1.]
- x + 6y = -18 [Equation 2.]

A. 6,4
B. 7,0
C. 7,4
D. 0,4

Step: 1
- x + 6y = -18
  
Step: 2
x = 18 + 6y
  [Rearrange equation 2.]
Step: 3
4(18 + 6y) - 8y = 8
  [Substitute the values.]
Step: 4
16y + 72 = 8
  [Group the like terms.]
Step: 5
16y = -64
  [Subtract 72 from the two sides of the equation.]
Step: 6
y = - 4
  [Divide throughout by 16.]
Step: 7
x = 18 + 6y = 18 + 64
  [Substitute the values.]
Step: 8
x = - 6
  [Simplify.]
Step: 9
The solution for the linear system is 6,4.
Correct Answer is :   6,4
Q13Which of the following ordered pairs satisfies the linear system?
-x + y = 6      [Equation 1]
3x - 2y = 2   [Equation 2]

A. 14,20
B. 14,20
C. 14,20
D. 14,20

Step: 1
y = x + 6
  [Rearrange Equation 1.]
Step: 2
3x - 2(x + 6) = 2
  [Substitute the values.]
Step: 3
x - 12 = 2
  [Group the like terms.]
Step: 4
x = 14
  [Add 12 to both sides of the equation.]
Step: 5
y = 14 + 6
  [Substitute the values.]
Step: 6
y = 20
  [Simplify.]
Step: 7
The solution for the linear system is 14,20.
Correct Answer is :   14,20
Q14Solve the linear system.
5x + 3y = 21  
x - 3y = 3

A. (0, - 13)
B. (- 4, 13)
C. 4,0
D. (4, 13)

Step: 1
5x + 3y = 21
  [Equation 1.]
Step: 2
x - 3y = 3
  [Equation 2.]
Step: 3
x = 3y + 3
  [Rearrange equation 2.]
Step: 4
5(3y + 3) + 3y = 21
  [Substitute the values.]
Step: 5
18y + 15 = 21
  [Group the like terms.]
Step: 6
18y = 6
  [Subtract 15 from the two sides of the equation.]
Step: 7
y = 13
  [Divide throughout by 18.]
Step: 8
x = 3y + 3 = 3(13) + 3
  [Substitute the value in step 3.]
Step: 9
x = 4
  [Simplify.]
Step: 10
The solution for the linear system is (4, 13).
Correct Answer is :   (4, 13)
Q15Which of the following ordered pairs satisfies the linear system?
4x + 3y = 16    [Equation 1]
-x + 5y = 19     [Equation 2]

A. 1,4
B. 1,4
C. 1,4
D. 1,4

Step: 1
x = 5y - 19
  [Rearrange Equation 2.]
Step: 2
4(5y - 19) + 3y = 16
  [Substitute the values.]
Step: 3
23y - 76 = 16
  [Group the like terms.]
Step: 4
23y = 92
  [Add 76 to both sides of the equation.]
Step: 5
y = 4
  [Divide throughout by 23.]
Step: 6
x = 5y - 19 = 54 - 19
  [Substitute the values.]
Step: 7
x = 1
  [Simplify.]
Step: 8
The solution for the linear system is 1,4.
Correct Answer is :   1,4