Step: 1
m∠AOD = 168°,
m∠ABC = 114° and
m∠ BAD = 65°
[Given.]
Step: 2
Join
BD.
Step: 3
m∠ABD =
12×
m∠AOD =
12× 168° = 84°
[Inscribed angle theorem.]
Step: 4
m∠ ABC = m∠ ABD + m∠ CBD
[Angle Addition Postulate.]
Step: 5
114° = 84° + m∠ CBD
[Substitute.]
Step: 6
m∠ CBD = 114° - 84° = 30°
Step: 7
Also,
m∠ABD +
m∠ADB +
m∠BAD = 180°
[Sum of the angles in a triangle is 180°.]
Step: 8
84° + m∠ADB + 65° = 180°
Step: 9
m∠ADB = 180° - 149° = 31°
Step: 10
Join
AO and
BO.
Step: 11
m∠AOB = 2 ×
m∠ADB = 2 × 31° = 62°
[Inscribed angle theorem.]
Step: 12
Join
CO and
DO.
Step: 13
m∠COD = 2 ×
m∠CBD = 2 × 30° = 60°
[Inscribed angle theorem.]
Step: 14
Now,
m∠AOD +
m∠AOB +
m∠BOC +
m∠COD = 360°
[The sum of angles around a point will always be 360°.]
Step: 15
168° + 62° + x + 60° = 360°
[Substitute.]
Step: 16
So, x = 360° - 290° = 70°